Swiftype

Best Self Hosted Alternatives to Swiftype

A curated collection of the 10 best self hosted alternatives to Swiftype.

Hosted search-as-a-service platform (part of Elastic) that provides site and app search capabilities, including content indexing, relevance tuning, APIs and UI components, and search analytics for integrating fast, relevant search into websites and applications.

Alternatives List

#1
Meilisearch

Meilisearch

Meilisearch is a lightning-fast search engine API for apps and websites, offering typo-tolerant full-text search plus vector and AI-ready hybrid retrieval.

Meilisearch screenshot

Meilisearch is an open source search engine exposed through an API, designed to provide fast, relevant search experiences for websites and applications. It combines traditional full-text search with optional vector-based semantic retrieval to support hybrid search and AI retrieval workflows.

Key Features

  • REST API for indexing documents and running searches
  • Search-as-you-type with low-latency results
  • Typo tolerance and configurable ranking/relevancy tuning
  • Filtering, faceting, and sorting for building rich search UIs
  • Geosearch for location-based filtering and ranking
  • Vector storage and vector search for semantic retrieval and hybrid search
  • API key-based access control, including tenant tokens for multi-tenancy

Use Cases

  • Site and application search with instant results and typo tolerance
  • E-commerce and catalog search with facets, filters, and sorting
  • AI retrieval and RAG pipelines using hybrid (full-text + vector) search

Limitations and Considerations

  • Some advanced capabilities (for example sharding and certain snapshot features) are reserved for the Enterprise Edition under a non-open-source license
  • Telemetry is enabled by default but can be disabled

Meilisearch is well-suited for teams that want a developer-friendly search API that is easy to integrate, performs well out of the box, and can evolve from classic keyword search to modern hybrid AI retrieval as needs grow.

55.4kstars
2.3kforks
#2
Typesense

Typesense

Typesense is a developer-friendly search engine for instant, typo-tolerant search-as-you-type with faceting, filtering, geo search, and vector/semantic search APIs.

Typesense screenshot

Typesense is an open source search engine designed for low-latency, “search-as-you-type” experiences. It focuses on developer-friendly operations and an easy-to-use API, while supporting both traditional full-text search and modern vector-based retrieval.

Key Features

  • Typo-tolerant fuzzy search optimized for instant results
  • Search-as-you-type autocomplete and relevance tuning at query time
  • Faceting, filtering, grouping/distinct, and dynamic sorting
  • Geo search for location-based queries
  • Synonyms and pinning/merchandising controls for curated results
  • Vector and semantic search, including hybrid retrieval patterns
  • Scoped API keys and multi-tenant access patterns
  • High-availability options via replication

Use Cases

  • Site and in-app search for documentation, content, and product catalogs
  • E-commerce discovery with facets, filtering, sorting, and pinned results
  • Semantic search and hybrid keyword+vector retrieval for knowledge bases

Typesense is well-suited for teams that want a streamlined search stack with strong defaults, low operational complexity, and an HTTP API that integrates easily into modern applications.

25kstars
850forks
#3
ZincSearch

ZincSearch

ZincSearch is a Go-based, lightweight search engine for full-text indexing with Elasticsearch API-compatible ingestion, a Vue UI, and a schema-less document model.

ZincSearch screenshot

ZincSearch is a lightweight, self-hosted search engine written in Go that provides full-text indexing with an Elasticsearch-compatible ingestion API and a dedicated Vue-based UI. It is designed to be simple to install and resource-efficient, making it suitable for app search and small-scale search workloads.

Key Features

  • Full-text indexing capability
  • Single binary distribution with multi-platform releases
  • Web UI for querying data (built with Vue)
  • Compatibility with Elasticsearch APIs for data ingestion (single-record and bulk)
  • Out-of-the-box authentication
  • Schema-less data model: different documents in the same index can have different fields
  • Index storage on disk
  • Aggregation support
  • Built on the Bluge indexing library for efficient search

Use Cases

  • App search and site search for applications and websites
  • Lightweight indexing of documents, emails, product catalogs, or similar data
  • Quick, self-hosted search deployments for small teams or private environments

Limitations and Considerations

  • Kibana is not supported; ZincSearch provides its own Vue-based UI

Conclusion

ZincSearch offers a compact, Go-based search solution for full-text indexing with Elasticsearch API compatibility and a native UI. It is well-suited for simple app search workloads and smaller on-premise deployments that require self-hosted indexing. (github.com)

17.7kstars
762forks
#4
Onyx Community Edition

Onyx Community Edition

Open-source platform for AI chat, RAG, agents, and enterprise search across your team’s connected knowledge sources, compatible with hosted and local LLMs.

Onyx Community Edition screenshot

Onyx Community Edition is an open-source, self-hostable AI platform that combines a team chat UI with enterprise search and retrieval-augmented generation (RAG). It is designed to work with a wide range of LLM providers as well as locally hosted models, including deployments in airgapped environments.

Key Features

  • AI chat interface designed to work with multiple LLM providers and self-hosted LLMs
  • RAG with hybrid retrieval and contextual grounding over ingested and uploaded content
  • Connectors to many external knowledge sources with metadata ingestion
  • Custom agents with configurable instructions, knowledge, and actions
  • Web search integration and deep-research style multi-step querying
  • Collaboration features such as chat sharing, feedback collection, and user management
  • Enterprise-oriented access controls including RBAC and support for SSO (depending on configuration)

Use Cases

  • Company-wide AI assistant grounded in internal documents and connected tools
  • Knowledge discovery and enterprise search across large document collections
  • Building task-focused AI agents that can retrieve context and trigger actions

Limitations and Considerations

  • Some advanced organization-focused capabilities may differ between Community and Enterprise editions
  • Retrieval quality and permissions mirroring depend on connector availability and configuration

Onyx CE is a strong fit for teams that want an extensible, transparent AI assistant and search layer over internal knowledge. It emphasizes configurable retrieval, integrations, and deployability across diverse infrastructure setups.

17.1kstars
2.3kforks
#5
OpenSearch

OpenSearch

OpenSearch is an Apache 2.0 open source distributed search and analytics engine for indexing, querying, and analyzing large-scale data with REST APIs.

OpenSearch is an Apache 2.0-licensed, community-driven distributed search and analytics engine designed for indexing and querying large volumes of data. It provides a RESTful API and is commonly used as the core search backend for applications and as a foundation for log and event analytics.

Key Features

  • Distributed indexing and search for horizontal scalability and high availability
  • RESTful API for indexing, querying, and cluster operations
  • Full-text search and relevance scoring for unstructured and semi-structured data
  • Aggregations for analytical queries over large datasets
  • Extensible architecture with plugins for additional capabilities

Use Cases

  • Powering application search for websites, product catalogs, and documentation
  • Centralized log search and analytics for infrastructure and applications
  • Building analytics experiences over event, text, and time-based datasets

Limitations and Considerations

  • Operational complexity can be significant for large clusters (sizing, tuning, shard management)
  • Query performance and cost depend heavily on index design and workload patterns

OpenSearch is a strong fit when you need scalable search and analytics with an open ecosystem and a well-known REST interface. It can serve as a primary search backend or as a core component in broader observability and analytics pipelines.

12.2kstars
2.4kforks
#6
Manticore Search

Manticore Search

Manticore Search is a fast open-source search database for full-text, faceted, and vector search with SQL (MySQL protocol) and HTTP JSON APIs.

Manticore Search screenshot

Manticore Search is an open-source search database designed for building fast full-text and hybrid (text + filters) search applications. It provides a SQL-first experience with MySQL protocol compatibility and an HTTP JSON API for programmatic indexing and querying.

Key Features

  • Full-text search with relevance ranking (BM25-style), highlighting, and many match operators
  • SQL interface with MySQL protocol support for querying and management
  • HTTP JSON API, including Elasticsearch-compatible bulk writes for easier ingestion
  • Real-time indexing so newly inserted or updated documents are searchable immediately
  • Advanced search capabilities such as faceting, geo-spatial search, autocomplete, fuzzy search, and spell correction
  • Vector search (KNN) to support semantic and similarity search scenarios
  • Multiple storage modes, including row-wise and optional columnar storage for larger datasets
  • High-availability options including built-in replication and load balancing
  • Built-in backup and restore tooling (including SQL BACKUP)

Use Cases

  • Application search for catalogs, marketplaces, documentation, and knowledge bases
  • Log/event search and analytics-style querying on large datasets
  • Hybrid search combining keyword relevance with filters, geo, and vector similarity

Limitations and Considerations

  • Not fully ACID-compliant; transaction semantics differ from general-purpose relational databases
  • Some features (such as columnar storage) may require additional components and tuning depending on workload

Manticore Search is well-suited when you need a high-performance, resource-efficient search engine with familiar SQL workflows and flexible APIs. It aims to be an approachable alternative to Elasticsearch for many search and analytics scenarios.

11.6kstars
622forks
#7
YaCy

YaCy

YaCy is a self-hostable search engine with crawler and indexing, supporting decentralized P2P search, standalone search portals, and intranet/file search.

YaCy is a self-hosted search engine stack combining a web crawler, an index, and a web UI for searching and managing content. It can run as a standalone search portal, an intranet search appliance, or as part of a decentralized peer-to-peer network that exchanges index data for web search.

Key Features

  • Built-in web crawler with scheduling to keep indexes fresh
  • Search UI plus administration interface for configuring crawls, indexes, and peers
  • Peer-to-peer mode for sharing index data without relying on a central operator
  • Standalone mode for private, local-only search results from your own index
  • Intranet search use case with network scanning to discover HTTP, FTP, and SMB servers
  • HTTP-based interfaces with XML/JSON outputs for many pages and functions

Use Cases

  • Run a private search portal for a curated set of websites you crawl
  • Provide intranet search across internal web services and shared resources
  • Participate in a community-operated decentralized web search network

Limitations and Considerations

  • Precompiled packages may be less frequent; building from source is commonly recommended
  • Requires Java (11+) and can be resource-intensive depending on crawl and index size

YaCy is suited to organizations and individuals who want control over crawling and indexing, and who prefer privacy-aware search without dependence on a centralized search provider. Its flexible modes make it useful both for private indexing and for distributed web search participation.

3.8kstars
472forks
#8
Apache Solr

Apache Solr

Scalable enterprise search platform supporting full-text, vector, faceted and geospatial search with SolrCloud clustering and a web admin UI.

Apache Solr screenshot

Apache Solr is an open-source, high-performance search platform that extends the Apache Lucene library to provide full-text, vector and geospatial search capabilities. It exposes REST-like APIs, a responsive admin UI and tooling for indexing, querying and cluster management. (lucene.apache.org)

Key Features

  • Full-text search with advanced query parsing, scoring, spellcheck, highlighting and suggestions. (solr.apache.org)
  • Dense-vector (ANN) search and text-to-vector integration for neural/semantic search workflows. (solr.apache.org)
  • Faceting, aggregations and JSON Facet API for powerful drill-down and analytics. (solr.apache.org)
  • Scalable SolrCloud mode with distributed indexing, replica management and centralized configuration. (solr.apache.org)
  • Built-in admin UI, metrics (JMX), plugin/extension points and rich document parsing (Apache Tika integration). (solr.apache.org)

Use Cases

  • Site and application search for e-commerce, media catalogs and documentation with faceted navigation and relevance tuning.
  • Semantic search and recommendations using dense-vector indexing and external embedding providers.
  • Large-scale, multi-tenant search deployments requiring distributed indexing, high availability and automated failover (SolrCloud).

Limitations and Considerations

  • SolrCloud relies on ZooKeeper for cluster coordination, which adds an operational component to manage and monitor. (solr.apache.org)
  • Vector search and "text-to-vector" features typically require external embedding services or model integrations to produce vectors; performance and storage costs should be evaluated for large vector collections. (solr.apache.org)

Apache Solr is a mature, extensible search engine suited for both small projects and massive, production search clusters. It combines Lucene search primitives with cluster orchestration, extensibility and modern features like neural search to support a wide range of search and discovery applications. (lucene.apache.org)

1.5kstars
804forks
#9
sist2

sist2

sist2 is a fast, low-memory file system indexer with a web UI for searching file contents and metadata, with Elasticsearch or SQLite backends.

sist2 (Simple incremental search tool) is a lightning-fast file system indexer that scans directories and builds a searchable index of file contents and metadata. It provides a mobile-friendly web interface and supports either Elasticsearch or a lightweight SQLite (FTS5) search backend.

Key Features

  • Incremental, multi-threaded scanning optimized for speed and low memory usage
  • Web UI for searching and browsing results, including thumbnails and metadata
  • Supports Elasticsearch indexing or a simpler SQLite-based search backend
  • Content extraction and metadata parsing for many common formats (documents, media, ebooks)
  • Recursive scanning inside archive files (including archives within archives)
  • Optional OCR via Tesseract for images and supported ebook/document formats
  • Manual tagging in the UI and automatic tagging via user scripts
  • Basic statistics and disk utilization visualizations

Use Cases

  • Personal or team “desktop search” for large document and media collections
  • Building a searchable archive of mixed file types (PDFs, photos, videos, ebooks)
  • Indexing NAS or server directories to quickly locate files by content or metadata

Limitations and Considerations

  • Elasticsearch provides more features but has a significantly higher resource footprint than SQLite
  • Archive scanning is single-threaded and some seek-heavy media formats in archives may be limited

sist2 is well-suited for users who want fast local file indexing with a modern web search experience and flexible backend options depending on resources and feature needs.

1.2kstars
72forks
#10
Fess

Fess

Fess is an open-source enterprise search server with a built-in crawler, web-based administration, and OpenSearch/Elasticsearch-backed full-text search.

Fess screenshot

Fess is an enterprise full-text search server designed to index and search content from multiple sources such as websites, file systems, and data stores. It provides a browser-based administration UI and can run anywhere a Java runtime (or Docker) is available.

Key Features

  • Web-based admin console to configure crawlers, indexing, and search UI settings
  • Built-in crawler for web content, file systems, and network shares, with support for many document formats (for example PDF and Microsoft Office)
  • Search backed by OpenSearch (and can also utilize Elasticsearch)
  • Faceted search, drill-down, and result labeling to improve discovery
  • Search and click log collection for analysis and relevance tuning
  • Extensible architecture with plugins and integrations, including JSON-based API output
  • Secure crawling and search options, including authenticated content and SSO integrations

Use Cases

  • Internal enterprise search across intranet sites, shared folders, and document repositories
  • Site search for public or private websites with embeddable JavaScript integration
  • Unified search portal across multiple business systems via connectors and plugins

Fess is a practical choice when you need a deployable, configurable search server with crawling, administration, and extensibility packaged into a single solution. It fits well for organizations that want full control over indexing pipelines and search behavior while relying on OpenSearch-compatible search capabilities.

1.1kstars
170forks

Why choose an open source alternative?

  • Data ownership: Keep your data on your own servers
  • No vendor lock-in: Freedom to switch or modify at any time
  • Cost savings: Reduce or eliminate subscription fees
  • Transparency: Audit the code and know exactly what's running